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The problem of controlling the motion of a manipulator, consisting of an elastic beam and a useful load, fixed at one of its end, 
is considered. The arm of the manipulator can rotate in a horizontal plane and move in a vertical direction. It is assumed that 
a gravitational force acts on the system. It is required to transfer the manipulator from a given initial position to a final one 
without exciting oscillations. Elastic tension and flexural deformations are taken into account. The control is constructed in the 
form of series in powers of a parameter, inversely proportional to Young's modulus. Recurrence formulae are given for all the 
expansion coefficients. © 2004 Elsevier Ltd. All rights reserved. 

In some problems of the construction and development of robotic systems it is required to take into 
account the elastic compliance of their components. As a rule, the influence of the gravitational force 
is ignored when investigating the controlled motion of manipulators with elastic sections [1-6]. Plane 
rotating motions of an elastic inextensible rod loaded by an absolutely rigid body under the action of 
the controlling moment of force were analysed and control problems for the transfer of the system from 
some initial position to a specified angular one with damping of elastic oscillations or to a rotational 
state of the system as a whole with a fixed angular velocity were considered in [1]. Damping of the 
oscillations of a massive load, fixed at the end of a long elastic beam by means of an active vibration 
damper with a translationally moving mass was studied in [2]. A system of partial integro-differential 
equations and boundary conditions for a manipulator, which consists of a rigid body and an elastic 
inextensible rod, was obtained taking the effect of the gravitational force into account in [3]. Control 
problems of transferring the manipulator from an arbitrary initial state to a final one with damping 
of relative deviations in a time T were investigated. A scheme for solving this problem by reducing 
it to a certain problem of mathematical physics and a moment problem was suggested, assuming the 
centrifugal forces to be negligibly small. The controlled motion of an elastic rod taking into account 
the tensional and flexural deformations was analysed in [4]. The problem of transferring the rod from 
a specified initial state to a specified final angular one without exciting oscillations when the angular 
velocity and elastic deviations at the beginning and end of the motion are equal to zero was solved. 
The control of manipulators with elastic sections and a useful load was studied in [5]. The problem of 
transferring the manipulator from a specified initial state to a specified final one without exciting oscilla- 
tions was solved. The control was constructed in the form of a series in powers of a parameter inversely 
proportional to Young's modulus. A method of solving the problem of the time-optimal action for a 
simplified model of the manipulator with elastic sections was suggested in [6]. 

In this paper a method of investigating the controlled motion of a manipulator consisting of an elastic 
beam and a useful load, fixed at the one of its ends, acted upon by gravitation forces, taking into account 
torsion and tensional and flexural deformations is developed. The problem of transferring the useful 
load from a specified initial state to a specified final one is solved. The motion is divided into two stages: 
(1) the transfer of the manipulator to the desired state; (2) imparting the desired angular orientation 

tPnkl. Mat. Mekh. Vol. 68, No. 5, pp. 807-818, 2004. 
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to the load. The scheme of analysis proposed is based on the semi-inverse method of solving dynamic 
problems, and it enables the law of variation of the instantaneous form of a beam to be obtained and 
enables the control moment to be constructed with a previously specified occurring of the expansion 
of the solution in powers of a parameter that is inversely proportional to Young's modulus. 

1. THE EQUATIONS OF MOTION OF A LOADED BEAM 

The system in question consists of an elastic uniform beam and a useful load, fixed at one of its ends. 
The beam is a long uniform bar of arbitrary cross-section area with the neutral line passing through 
the centre of mass of the cross-section. The neutral line is assumed to be straight in the undeformed 
state. The beam can rotate in space O'x 'y 'z  about the axis O'z  under the control moment M. The point 
O of the beam can move along the O'z axis under the control force F. Let I be the length of the beam, 
e its density, o its cross-section area, m the mass of the load and g the acceleration due to gravity. We 
will assume that displacements of points of the beam are small compared to its length. We will introduce 
a system of coordinates Oxyz, which rotates about the O'z axis together with the beam. The Ox axis is 
specified in a direction tangential to the neutral line of the beam at the point O (Fig. 1). 

Let x be the distance from the end O of the undeformed beam to some point G on the neutral line. 
Suppose 5r is the vector of the displacement of the point G, while u(t, x), w(t, x) and z(t, x) are the 
projections of the vector ~r onto the axes of system of coordinates Oxyz. The displacement ~r(t, x) is a 
vector function of argumentx that determines the instantaneous form of the beam at every fixed instant 
of time. For a fixed value of x, the displacement 5r(t, x) is a vector function of time, which uniquely 
defines the position of the corresponding point of the neutral line of the beam. 

Suppose ~0 is the angle of rotation of the frame of reference Oxyz, which is measured from the axis 
r r T passing through the point O parallel to the O x axis and (rl, re, r3) are the coordinates of the centre 

of mass of the load in the system of coordinates O"x"y"z" linked with it. The origin of this system is at 
the fixed point O" of the load and the beam (the O'~c" axis is directed along the tangent to the neutral 
line of the beam at the point O"; if (p = 0 and the beam is not deformed, the axes O'~c", O')# and O"z" 
are parallel to the axes O'x' ,  O'y '  and O'z, respectively). We will assume that rl, r2 and r3 are small 
compared to the beam's length. Let O"x", O"y" and O"z" be the principal axes of inertia of the load, and 
let A, B and C be the principal moments of inertia of the load about the axes O"z", O"y" and O"x", 
respectively. 

We will connect the system of coordinates Gx 'y" z "  to each cross-section of the beam, and direct the 
Gx" axis along the tangent to the neutral line of the beam at the point G. Let ~' be the angle of rotation 
of the cross-section of the beam about the Gx" axis. Taking into account the rotational inertia of the 
load and the cross-section of the beam [7], the kinetic energy of the system can be represented in the 
form 

I 

1 1 - 
T = ~ p a ~ ( u ,  u t, w, w t, Zt, Zt, x, (p)dx + ~m~;(a, a t, b, b t, c t, I, (p) + T 1 

0 
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a( t )  = u(t,  l) + r I - r2wx(t,  l) - r3zx(t , l) 

b ( t )  = w(t ,  !) + r 2 + rlWx(t,  l) - r37(t, l) 

c ( t )  = Z(t, l) + z ( t )  + r 3 + rlZx(t , l) + r2~l(t, l) 

~;(U, Ut, W, Wt, Zt, Zt' X, (p) = (X(p + Wt) 2 + W2tp 2 + 2XU(p 2 + U2tp 2 + 

2 
+ ut + 2u(pwt - 2w(put + (zr + Zt) 2 

2 . 2  2 - - ,  2 
~ ( a ,  a t, b, b,, ct, l, (p) = (lfp + bt) 2 + b2~ 2 + 21a(p 2 + a tp + a t + zatpo t - 2b(pa t + c t 

1 
1 2 1 

T 1 = ~ f ~ l i ( W x t  + (p) dx  + ~A(wx , ( t ,  l) + tp) 2 + 
0 

I 
1 2 2 

+ ~ ( 1 2 Z t x  + I3"Yt )dx  1 2 + ~(Bztx( t ,  l) + CT~(t, l ) )  

0 

where 2(t) is the absolute vertical coordinate of the point O, and 11, I2 and 13 are the moments of inertia 
of the cross-section about the axes Gz" ,  Gy"  and Gx",  respectively. 

The potential energy has the form (1.1) 

1 1 1 

1 2 2 1 2 + J f g e o ( z  rI = ~[E(I, wxx + t2zx~)ax + ~ f E l 3 v x d x  + ~)dx + 

0 0 0 
l 

+ ~IEt~(ff(l + ux)2+ w 2 + Z 2 -  1)2dx + m g ( z ( t ,  l ) +  ~ ) + m g ( r 2 s i n  ¥ + r3eos), ) 

0 

(1.1) 

where E is Young's modulus. 
The first term on the right-hand side of equality (1.1) is the potential energy of elastic bending deforma- 

tion, the second term is the torsional potential energy, the third, fifth and sixth terms are the potential 
energy due to the weight of the beam and the load, and the fourth term is the potential energy of elastic 
stretching deformation. 

We will introduce the dimensionless variables (everywhere below k = 1, 2, 3) 

t u' u w' w z' z ~, z x' = x , rk 
t ' = T :  ' =7' =7' = l '  = l '  7' rk=7 

where x is the time scale, and 

1 E1 E 
~ < ~ < ~  (1.2) 

Suppose M 0 and F 0 are characteristic quantities having dimensions of moment and force, respectively, 
e.g. M0 = suptl M(t) [ and F0 = suptl F(t) 1. We will assume that Ux, Wx and Zx are small compared to unity. 
Let the following inequalities hold 

1 _1 ¢2< ,  , ¢ < c  2 

The system of equations of motion and the boundary conditions in new variables can be written using 
the Ostrogradskii-Hamilton's principle [8], taking into account assumptions made, in the form (the 
primes are omitted) [5] 
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1 

PItxZio + xw,,  + 2xiou,]dx + pa t i  o + w,, + 2(0u,] Ix = 1 + 
0 

1 

+ p l I ( i o  + Wxtt)dx + P2(Wxtt(t ,  1) + io) = QI  

o 

i 1 

gfz,,dx+O,(1 + I)+ [.O,,Zx,,ax+O,2zx,,(,.l) = Q2 
0 0 

( 1 ) 
gX1 xio + w,, - ~Wxx, ,  + 2(pu, + W~xxx = 0 

g~2(Zt t  -- ~2 zxxttl  + ~ . + A ) + Z x x x x  = 0 

~[xx = g"~ttl'I(X(P 2 -- Utt + 2(pwt) + Uxx = 0 

Wxx(t , 1) = --~t~l~,l(Wxt t + io)]x = 1 

Zxx(t, 1) = -g)~27~2z~,,I ~ = l 

Wxxx(t, 1) = ~ Z I ~ [ I O  + w t t +  2~0U,] Ix = 1 + g(Wxt t  + io)Ix = I 

Zxxx(t, 1) = gX2a[~:,, + z,, + A] Ix = 1 + gZxttlx .--- I 

(1.3) 

Tx(t, 1) = - g~.33/tt(t, 1) - gax3(r2A - r3 i  O + r2~tt ) 

Ux(t, l )  = g a [ ~  2 -- Utt + 2iow,] x = 1 

L = m tx = L ~ . .~ ._ ,  A 
e O '  7 '  P - - - - 2  ' Pl  = ~ 2 -  '[ M 0 "C2Mo ,C2Mo 

= po/2, fi' = pll____2 ~2 = B__if__ ~3 = g ( m + p t ~ l )  
X2Fo X2Fo ' 172F0 ' Fo 

QI = ~0 ,  Q2 = ~0, la = ~/2 Zk = ~12 
Ex 2' 1 k 

~'l = A B C _ g'C 2 
~(yl 3, ~'2 = ~(TI 3, ~'3 = 3' A -  ~ a l  l 

Since the end of  the beam O is fixed and restrained, it is necessary to add six more conditions to the 
above equations: 

w(t ,O)  = O, Wx(t,O) = O, u(t ,O) = 0 
(1.4) 

z( t ,O) = 0 ,  zx(t,O) = 0 ,  ~l(t,O) = 0  

The problem of transferring the beam from a specified initial position to a specified final one was 
solved for the above mathematical  model,  where the following conditions must be satisfied at the 
beginning and end of the manoeuvre 

~(0)  = O, ~(0)  = O, w(O,x)  = w, (0 ,  x )  = u(0 ,  x)  = u,(O,x) = 0 



where 
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~.(0) = ~,(0) = O, z ( O , x )  = Z o (x ) ,  z,(O,x) = O, T(O,x) = Go(x  ) 

tp(rl) = % ,  ¢p(rl) = O, w(rl ,  x )  = w,(rl,  x )  = u(rl,  x )  = u,(rl, x )  = 0 

~(rl) = Zo, ~,(rl) = 0 

Z(l],x) = Zo(x ), zt(rl, x) = 0, T(rl, x) = Go(x  ) 
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(1.5) 

1] x' Zo(x ) = - ~ t Z 2  x 4 1 = - ~ ( t ~ + l ) x 3 +  ( l + 2 ~ ) x  2 A 

Go(x  ) = -~tZ30~r2xA 

In reality these conditions mean that the manipulator is transferred from one state of equilibrium 
to another without exciting oscillations. 

2. C O N T R O L  OF AN E L A S T I C  L O A D E D  BEAM 

We will construct the solution of system (1.3), taking conditions (1.4) and (1.5) into account, in the form 
of series in powers of the parameter ~t. Let ~t = 0; then 

u(°)(t, x )  =- O, wt°)(t, x )  - O, z(°)(t,  x )  - O, Tt°)(t, x) - 0 

Consequently, 

u = ~ ,  ~?u")(t, x), w = ~ ,  ~t~w")(t, x) 
i=1 i=1 

z = ~ ~t'z(')(t, x), T = Y~ I.t'T~')(t, x) 
i=1 i=l 

(2.1) 

(~---- E i(p(i,(t), ~ _~ ~ i~(i)(,), Q , -  ~ iQ]i,(f), 0 2 - - - ~ . / o ~ i ' ( ` )  (2.2) 

i--0 i=O i=O i=O 

Let ~(°)(t) and 2~°)(t) be specified functions. We will assume that (p(i)(t) = 0 and 2~°)(t) --- 0 for any 
i > 0. We will distinguish the coefficients of the zeroth and first powers of kt in Eqs (1.3) and the boundary 
conditions. For the first approximation we obtain the following expressions 

2 
(2 .3)  

Zl ._.(o), 5 10(2(ct + ZI l) + 1)x 3 + 20(3(ct + Z~ l + ~'l) + 1)x 2] (2.4) w(')(t ,  x )  = - 1 - ~ q ,  tx  - 

= , , ) -g(~+ l)x3 + ~(2tz+ I (2.5) 

T(1)(t, X) = -Ix~z3(r2A- r3~ (0) + r2z~ O)) 
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1 

Q]I)(t) = [~f[xw(t:) ÷2x~)(O)u(t l ,]dx+[~ff ,[W~:)+2f~(O,u(t l ,]  x= 1 + 

o 
l (2.6) 

(1) ~2Wxt t ( t ,  1) + ~ l f W x t t d  X + (l) 
0 

Q~°)(t) ~(I ,-(0). = + I~)Ztt -- ~3 

l ! 
" ( l )  

Q~l)(t ) ~fz~])dx+cx~z(:,(t, 1 )+f~ ,zx t tdx+ ~ (l, = ~ 2 z ~ .  (t, 1 ) 
0 0 

Separating the coefficients of g~, we obtain recurrence formulae for determining the nth approximation 
u(n') w(n) o~n), Q(n) (n > 1) 

1 
.(o) (n) (n) 2"(°)utn)'l 

~ f [xw l t  ) + 2xq) u t ]dx + ~o~[wtt + ~ t ]Ix =1 + 
0 

1 
(n) (n) Q~n)  

+ ~lfWxndx+ ~2Wx.(t, 1) = 
o 

1 1 
- (n) " (n) " (n) " (n) = Q~n) ~fZt, dx + o~Z,t (t, 1) + f~lZ~,,dx + ~J2z~.(t, 1) 

o o 

(n) I (n-I)  1 ( n - l ) _  n - l ) l  w~xxx = -Zl wtt - ~Wxxtt * 2(0(0)u(t 

Zxxxx (n-l)  1 (n-l)  

C n )  (n - l )  
xx = ~tt 

u(n)  , (n-l) . 2(p(O)w(tn-l)] 
xx = --t-- I~tt + 

w(")(t, O) (") '  = w~ ~ t ,O) -O 

(n)lt (n-  1) 
Wxx ~., 1) = - g l ~ l W x t t  (t, 1) 

(n),. 1) ( , - l )  2(o(O)u(,-l)] Wxxx(I' = ~lO~[Wtt + t x = 

z(")(t, O) = z~")(t, o) =- 0 

(n)tt 1) -~2~.2Z(nt-l)(t, 1) Zxx ~. ~ ---- 

(n) t t  X20~Zlt-l)(t, 1) (n-l)( / ,  1) Zxxx~ , 1) = + Zxt t 

' i  - ( n - I ) ' -  yfn)(t ,O)-O, Cxn)(t, 1)- - , ,37t t  ~, 1) 

u(")(t, O) - 0 

(n) . . . .  (n- l)  I n - l ) ]  x u x tr, I) + 2~(°)w = U,[-- Utt = I 

("-l)(t, 1) l + Wxtt 

(2.7) 
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The last four equations of system (2.7) can be solved, since their right-hand sides are polynomials 
in powers ofx. Then, substituting the expressions obtained for w (n), z (n), u (n) and ./(n) into the first and 
second equations of system (2.7), we obtain the laws of variation of Q~n)(t) and Q(2n)(t). 

In order for conditions (1.5) to be satisfied up to the nth order inclusive it is sufficient to choose the 
functions (0(°)(t) and ~°)(t) so that 

d2n + ! ~(o) 
(o(°)(0) = ~ ( ° ) (0 )  = . . . .  ( 0 )  = o 

dt2n + 1 

d2n + I ~(o) 

= = . . . .  d-Tz:  ( o )  = o 

d2n + 1 (p(o) 
~(°)(r l )  = ~(°) (r l )  . . . . .  (rl) = 0 

dt2n + 1 

(2.8) 

d2n + 1 ~(o) 
~ o % )  = ~ o % )  . . . . .  at2.+, ( n )  = o 

Conditions (2.8) are obtained from system of equations (2.7) and also from (2.3)-(2.6). The coefficients 
in expansions (2.1) and (2.2) have a polynomial form with respect to x. 

3. T H E  E Q U A T I O N S  O F  M O T I O N  O F  A N  E L A S T I C  M A N I P U L A T O R  
W I T H  A R O T A T I N G  U S E F U L  L O A D  

A manipulator consisting of a uniform elastic beam and a load of mass m is considered. The end of 
the beam O is clamped and restrained. At the point O the tangent to the neutral line of the beam remains 
fixed. The load is attached to the end of the beam O' and can rotate under the moment M about the 
axis coinciding with the tangent at the point O' to the neutral line of the beam. The centre of mass of 
the load can deviate from the tangent to the neutral line of the beam at the point O'. It is assumed that 
displacements of points of the beam are small compared to its length. 

We will introduce a fixed system of coordinates Oxyz. The Ox axis lies along the neutral line of the 
undeformed beam at the initial instant of time (Fig. 2). 

As before, x is the distance from the end O of the undeformed beam to a certain point G on the 
neutral line. Suppose ~r is the displacement vector of the point G and u(t, x), w(t, x) and z(t, x) are the 
projections of the vector ~r onto the axes of the system of coordinates Oxyz. 

We will relate system of coordinates Gx'y'z' with every cross-section of the beam, where the Gx' axis 
is directed along the tangent to the neutral line of the beam at the point G. We will represent the kinetic 
energy of the mechanical system as the sum of two terms: the kinetic energy of the beam T 1 and the 
kinetic energy of the load T2 

T = TI + T2 

0 

Y m 

G O' 

U 

Fig. 2 
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Suppose yis a (small) angle of rotation of the cross-section of the beam about the tangent to the neutral 
line of the beam. We will assume that Gx'. Gy' and Gz' are the principal central axes of inertia of the 
cross-section of the beam at the point G. We then obtain for the kinetic energy T1 

l 1 

T l = ~[p~(u  t +wt +z t )dx+ p(llOe+12~2+I3412)dx 
0 0 

where/1, I2, I3 are the moments of inertia of the cross-section of the beam about the axes Gz', Gy' and 
Gx', respectively, and 0 and V are small angles of rotation of the cross-section of the beam about the 
axes Gz' and Gy', respectively. 

The kinetic energy T2 is calculated from the formula [8] 

1 2 
T 2 = ~mV O, + mVo. .  (0~ x re) + ~(o. J¢o 

where Vo, is the velocity of the point O', rc is the radius-vector of the centre of mass of the load in 
system of coordinates O'x'y"z", commented to the load, to is the angular velocity and J is the inertia 
operator. 

Suppose the axes O'x', O'y" and O'z" are the principal axes of inertia of the load and the coordinates 
of the vector rc = (RI, R2, R3) are small compared to the length of the beam. We will denote by ¢ the 
angle of rotation of the load (not a small quantity) about Ox' axis, and by A, B and C the moments of 
inertia of the load about the principal axes. We will assume that A/B - 1. Then the kinetic energy of 
the system can be written in the form [5] 

I l 
~ 2 2 2 ~ f  2 2 2 

T = T I + T  2 = p ~ ( u  t + w  t + z t ) d x +  P( l lWxt+12zx t+13"[ t )dx+ 

0 0 

1 2 2 2 
+ 2 m(u t  + wt + Zt)lx = l + m ~ [ - w t ( R 3 c ° s ~  + R2sin~b) + 

+ z t ( _ R 3 s i n t ~ + R 2 c o s ~ ) ] l x = l +  ~[B(Wz 2 + Zxt)2 +C~2]  x=l 

The potential energy is expressed by the relation 

l l II 2 
EIezxx)dx + Ea(~[(1 + ux) 2 + w x = (EllWxx+ 1) dx+ l-I l [  2 2 2 2  

+ Z x - 
~ w  

0 0 
t t (3.1) 

1 f 2 
+ I p t ~ g z d x  + mgz ( t ,  rag(R 2 sint~ + R 3 cos~)  + ~jEI3Yxdx l) + 

0 0 

We will introduce the dimensionless variables 

Rk X' X 
t '  = t u '  = 1, W' = l ,  Z' = l ,  R'k = -  T ,  = ~ "[1' 

where xl is a time scale, which satisfies condition (1.2). 
Using the Ostrogradskii-Hamilton principle and taking into account the above assumptions, we obtain 

the equations of motion and the boundary conditions in the new variables (the primes are omitted) [5] 

~tu,,- u~ -- 0, ~t(Zlwt,-  w~t,) + w ~  = 0 

I.t(X2Zn - Zxx. + Z2 A) + Zxxxx = O, IlYtt - Yxx = 0 

= Q - AI (R2 cosq~ - R3 sin d~) 

wxx(t, 1) + I.t~lWx.(t,  1) = 0 
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Zxx(t, 1)+ I .[~,2zxtt( t  , 1) = 0 

ux(t,  1) = - ~ t a u . ( t ,  1) 

"~x(t, l) = - ~1.~,3~ - la~)~3A(R2cost ~ - R 3 sint~) 

Wxxx(t, 1) = ~tZlo~[wtt(t, 1) - ~(Racost ~ + R2sin~) + 

+ q~2(R 3 sin~ + R2cost~) ] + ~wx, t ( t ,  1) 

zxxx(t, 1) = ~tZ2a[ztt(t ,  l) + A -  ~(Rasin ~ -R2cosO)-  

- ~2(R 3 cost~ + R2sin~) ] + btzx.( t ,  1 ) 

~22 o/2 B B 

E x I I k ' -~i'~1' ~ 2  ' 
~'3 = C 

~113 

= ~I'C~ m L g x  2 mgl'c 2 
--~--, L =  ~ I X = -  A = ~  A! 

~0 '  l '  l '  --C 

727 

(3.2) 

Since the end of the beam O is fixed and restrained, we add the following conditions 

w(t ,  O) = wx(t ,  O) = w ( t , O )  = T ( t ,O)  = z ( t , O )  = zx ( t ,O)  = 0 

For the above mathematical model the problem of the rotation of the load from the specified initial 
angular position to the final one was solved, where the following conditions must be satisfied at the 
beginning and end of the manoeuvre, 

¢(o) = ~o, ~(o) = o, w(O, x) = w,(O, x) -- o 

u(0, x) = u,(0, x) = z,(0, x) = ~,(0, x) = 0 

z(0, x) = Z0(x),  ~t(0, x) = Gl(x)  
(3.3) 

¢(~1) = Ct, ~ ( ~ l )  = 0, w ( ~ l , x )  = w,(rll, x)  = 0 

u(rll, x) = u,(rll, x) = z,(rll, x)  = 0 

'~ t ( l~l , t )  = 0, Z(I~I,X ) = Z0(X), ~¢(1~1, X ) = G2(x  ) 

rll = x l ,  Z o ( x  ) = -~tZ2 x 4 1 1 - ~ ( a +  1)x3+~(1 + 2 a ) x  2 A 

G i ( x ) -- - ~ Z 3  ~ A x  (R 2 cos  {~0 - R3 sin t~o ) 

G2(x ) = -I.t~30~Ax(R2cosq~ ! - R 3 sinai) 

where 

4. C O N T R O L  OF THE M O T I O N  OF THE LOAD 

We will construct the solution of system (3.2) in the form of series in powers of the parameter kt, Suppose 
I-t = 0, then 

wf°)(t, x) = u(°)(t, x) -- Zf°)(t, x) = ~(°)(t, x) - 0 
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o n  

u = giu(i)(t, x),  w = ]~ ~tiwti)(t, x),  z = ~., ttizti)(t, x)  (4.1) 
i = i  i = !  i = i  

e e  ~ 

V = Z lliv(i)(t' x), (~ = Z If~t/)(t)' Q = ~, lx'Q.(')(t) (4.2) 
iffil i=0 iffi0 

Let +(°)(t) be a specified law of variation of the angular velocity of the load. We will suppose that 
(~(i) ___ 0 for any i > 0. We will separate the coefficients of the zeroth and first powers of ~t in Eqs (3.2) 
and in the boundary conditions. For the first approximation we obtain the expressions 

where 

1 2 _ 1 3  U(1)(t, X) -- 0, W(1)(t,X) = fl(X)Al(t), f1(x) -- :ZI~(X :x) 

(I 4X X3 ( 1 X ) 21 1 3x 2]} ZO)(t, x) =-Z2 ~ - ~ - ( a + l ) ~ +  a + [  ~- A-aA2( t  ) ~ - -  

T(1)(t,x) = h1(x)~ (°)+pl(x)A3(t), hi(x ) = -~,3 x, pl(x) = -~Z3Ax 

(4.3) 

(4.4) 

(4.5) 

A, (t) = ~t°)(R 3 cosO t°) + R 2 sinO t°)) + (~(°))2(R 3 sin0 t°) + R 2 cos0 t°)) 

A2(t ) = ~(°)(R2cos0(°)- R3sin~b (°)) - (~(°))2(R2sin~b(°) + R3cos~b (°)) 

A3(t ) = R2cosqb(°)-R3sinqb (°) 

Q(t) = ~(°)(t) + AIA3(t ) 

Separatinz out the coefficients of ~n, w e  obtain recurrence formulae for the nth approximation u(n), 
w(n), z(n), ~n)  (n  > 1) 

d2(n - 1) 
(n) -Zlfn-l) AI(t) u(")(t, x) =- O, wxxxx = ( f : -  l 

d 2(n - 1 ) 
(n) ,, 

Zxxxx = (gn_ 1 - Z 2 g n - 0 ~ A 2 ( t )  

d2(n- 1) . (n) 
txx = hn - 1(~ (2n) 4- Pn - l dt2( n _ I-- '-"~A3(t) 

wC")(t, O) = w~")(t, O) --- 0 

d2(n - l) 
(")'" 1 )  = ~, ' ( 1  ( 4 . 6 )  Wxxtt, - i f n - I  ) ~ A l ( t )  

d2(n - I) 
_(n),. _~.2gn_ 1(1) _ A2(t ) z = t , ,  1 )  = ' 

, d2 (n -  1) 
(n)tt 1) = [Zlo t fn_ l (1)+ f n _ l ( 1 ) ] ~ A l ( t )  W XXX ~, 
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(,0.- 1) ' d2(n- I) 
Zxxxtt, = [ X 2 t X g n _ l ( 1 ) + g n _ l ( 1 ) ] ~ A 2 ( t )  

Tfn)(t, 0) = T~n)(t, 1) = 0 

where j~(x), gi(x), hi(x) and pi(x) are polynomials. 
It is necessary to choose the function 0(°)(t), which satisfies condition (2.8), in order to ensure that 

conditions (3.3) are satisfied up to the nth order inclusive. As in the previous problem the coefficients 
of the expansions (4.1) and (4.2) have the form of polynomials in x. 

5. R E S U L T S  OF C A L C U L A T I O N S  

Calculations were performed for the following parameters: 

e = 5500 kg/m 3, E = 1.5 x 1011 N/m 2, l = 1 m, T = 2 s, m = 14 kg, R1 = 0.15 m, 

R 2 = R 3 = 0.1 m, x = 0.02 s, 'gl = 0.02 s, T 1 = 0.2 s, 111 = 10,A = B = 0.05 kg m 2, 
C = 0.1 kg m e, ~t = 9.167 x 10 -5, ct = 0.507, 11 = 100. 

It was assumed that the cross-section of the beam is a circle of radius r = 0.04 m. The changes in 
velocity were taken in the form 

0t°)(t) = AirS(t-r i) 5, ~p(°)(t)= A2tS(t-rlt) s, zt(t)= A3sinS(~t) 

It was also assumed that 

q~(~) = -10.8, O(0) = 0, ¢(rlt ) = -5g/4, ~(rl) = 0.679 

Hence 

A 1 = - 3 x 1 0  -Is, A 2 =-10.9x10 -s, A 3 = 0.02 

This corresponds to the maximum of the moduli of the angular velocities 

~0ma x -- 14.6 s -1, (~max = 53.3 s -1 

Expansions up to the second order in ~t were used in the calculations. Graphs of the control moments 
and forces for the model of the motion of the elastic manipulator with a useful load are shown in Fig. 3 
(here the inverse transition from dimensionless quantities to dimensional ones was carried out). 
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